Convergence of Fourier truncations for compact quantum groups and finitely generated groups

نویسندگان

چکیده

We generalize the Fej\'er-Riesz operator systems defined for circle group by Connes and van Suijlekom to setting of compact matrix quantum groups their ergodic actions on C*-algebras. These truncations form filtrations containing C*-algebra. show that when they C*-algebra are equipped with suitable metrics, then under conditions converge Gromov-Hausdorff distance. Among other examples, our results applicable $SU_q(2)$ homogeneous spaces $S^2_q$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely generated connected locally compact groups

Hofmann and Morris [6] proved that a locally compact connected group G has a finite subset generating a dense subgroup if and only if the weight w(G) of G does not exceed c , the cardinality of the continuum. The minimum cardinality of such a topological generating set is an invariant of the group, is denoted by σ(G), and is called the topological rank of G . For compact abelian groups of weigh...

متن کامل

Lacunary Fourier Series for Compact Quantum Groups

This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...

متن کامل

Finitely Generated Semiautomatic Groups

The present work shows that Cayley automatic groups are semiautomatic and exhibits some further constructions of semiautomatic groups and in particular shows that every finitely generated group of nilpotency class 3 is semiautomatic.

متن کامل

Combinatorics of Finitely Generated Groups

of the Dissertation Combinatorics of Finitely Generated Groups

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2023

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2023.104921